
The MCNPTools Package: Installation and Use

Clell J. (CJ) Solomon, Cameron Bates, and Joel Kulesza

LANL, XCP-3

March 30, 2017

Contents
1 Installation 2

1.1 Overview and Requirements . 2
1.2 Building the MCNPTools C++ Library and Utilities . 2
1.3 Building the MCNPTools Python2 and Python3 Extensions 3
1.4 Installing the Python3 Extensions with pip . 3

2 The MCNPTools Utilities 4
2.1 The mergemctals Utility . 4
2.2 The mergemeshtals Utility . 4
2.3 The mctal2rad Utility . 5
2.4 The l3dinfo Utility . 5
2.5 The l3dcoarsen Utility . 6
2.6 The l3dscale Utility . 6

3 Description of the MCNPTools Library 7
3.1 Accessing MCTAL Data with MCNPTools . 7

3.1.1 The Mctal Class . 7
3.1.2 The MctalTally Class . 8
3.1.3 The MctalKcode Class . 9

3.2 Accessing MESHTAL Data with MCNPTools . 10
3.2.1 The Meshtal Class . 11
3.2.2 The MeshtalTally Class . 11

3.3 Accessing PTRAC Data with MCNPTools . 12
3.3.1 The Ptrac Class . 13
3.3.2 The PtracHistory Class . 13
3.3.3 The PtracNPS Class . 14
3.3.4 The PtracEvent Class . 14

4 Acknowledgments 17

5 C++ Examples 17
5.1 Mctal Example 1 . 17
5.2 Mctal Example 2 . 17
5.3 Meshtal Example . 18
5.4 Ptrac Example 1 . 19
5.5 Ptrac Example 2 . 20

LA-UR-17-21779 1

6 Python Examples 21
6.1 Mctal Example 1 . 21
6.2 Mctal Example 2 . 21
6.3 Meshtal Example . 22
6.4 Ptrac Example 1 . 22
6.5 Ptrac Example 2 . 23

1 Installation

If the user has installed MCNP 6.2.0 from the installation DVDs, then prebuilt versions of the MCNPTools
binaries (see below) and the MCNPTools libraries are available under the respective bin and lib directories
of the installation. As with MCNP itself, the standalone MCNPTools binaries have been placed in the user’s
path for use.

If the user desires to build the MCNPTools utilities and C++ bindings or the user desires the Python
bindings, the following sections will describe how to build and install the MCNPTools binaries, libraries, and
Python bindings. After the MCNP 6.2.0 installation process, the MCNPTools source code can be found
under MCNP_CODE/MCNP620/Utilities/MCNPTOOLS/Source and the prebuilt Python wheels can be found
under MCNP_CODE/MCNP620/Utilities/MCNPTOOLS/wheels.

1.1 Overview and Requirements

MCNPTools1 is a C++ software library bound to Python (2 & 3) via the Simplified Wrapper and Interface
Generator (SWIG version 3.0.7). The minimum requirements to build MCNPTools as a C++ library are the
following:

• a C++ compiler supporting C++11 features

• the CMake tool set version 3.1 or greater

Currently, the following compilers are supported:

• GCC 5.3.0 and above on Linux and Mac OS X

• MSVC 19.0 on Windows

• Apple Clang 7.3.0 and above on Mac OS X

Additionally, one must have Python installed to build the Python bindings. CMake is not required should
one desire to build only the Python.

1.2 Building the MCNPTools C++ Library and Utilities

To begin building MCNPTools’ C++ library and utilities, open a command-line interface and create a build
directory. On Mac OS X or Linux, execute the following instructions:

cmake -DCMAKE_INSTALL_PREFIX=/install/path /path/to/mcnptools/libmcnptools
make
make test

1MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Los Alamos National Security, LLC, manager
and operator of Los Alamos National Laboratory. Any third party use of such registered marks should be properly attributed to
Los Alamos National Security, LLC, including the use of the ® designation as appropriate. Any questions regarding licensing,
proper use, and/or proper attribution of Los Alamos National Security, LLC marks should be directed to trademarks@lanl.gov.

LA-UR-17-21779 2

make install

where “/install/path” should be replaced with the desired installation directory on the system and
“/path/to/mcnptools/libmcnptools” is the path to the “libmcnptools” source directory. Execution of “make
test” is recommended but optional and will run the MCNPTools unit tests.

On Windows, only the “Visual Studio 14 2015” build tools are currently supported. To build on Windows
issue the following commands at a Windows “Developer Command Prompt for VS2015” (it is assumed the
cmake command is in your PATH):

cmake -G "Visual Studio 14 2015 Win64" -DCMAKE_INSTALL_PREFIX=C:\install\path^
C:\path\to\mcnptools\libmcnptools

cmake --build . --config RelWithDebInfo
ctest -C RelWithDebInfo
cmake --build . --config RelWithDebInfo --target install

1.3 Building the MCNPTools Python2 and Python3 Extensions

Building and installing the MCNPTools’ Python extensions is performed with Python’s “setuptools” package.
A “setup.py” file is provided in the “mcnptools/python” directory. The Python extensions can be built with
the following commands at the command-line interface:

python setup.py build_ext
python setup.py test
python setup.py install --prefix=/path/to/install/dir

where --prefix=/path/to/install/dir specifies an optional installation location different from the
Python installation’s default location. If not installing to the Python installation’s default install
location, one will likely be required to set the PYTHONPATH environment variable to include the path
to the location where the mcnptools package is installed—for Python version X.X this is typically
/path/to/install/dir/lib/pythonX.X/site-packages.

Depending on the users Python installation, it is possible that minor tweaks, e.g., altering some compile or
link flags, to the “setup.py” file will be required. Builds of the Python bindings have been extensively tested
with the Anaconda Python distribution (https://www.continuum.io/downloads), but have been cursorily
tested with other distributions as well.

1.4 Installing the Python3 Extensions with pip

The MCNPTools release also ships with “Python Wheel” files to directly install pre-built Python3 bindings.
The wheels were assembled using Anaconda 4.3.0 (https://www.continuum.io/downloads) which is based on
Python 3.6. The wheel files can be installed with pip using the following command:

pip install --prefix /path/to/install/dir mcnptools-3.8.0-XXXXXX.whl

Above, /path/to/install/dir is the location where the MCNPTools package should be installed, and, if
it is omitted, defaults to the install location of the Python installation. The XXXXXX is a placeholder for
information about the system the for which the specific wheel file is built, e.g., win_amd64.

LA-UR-17-21779 3

2 The MCNPTools Utilities

MCNPTools comes with binary utilities to facilitate common tasks or query MCNP output files. This section
provides information regarding the usage of these utilities. The usage information presented can be obtained
from all utilities by running the utility with the -h or --help options specified.

2.1 The mergemctals Utility

The mergemctals utility statistically merges the results in multiple MCNP MCTAL files and produces a
single resulting MCTAL file. mergemctals can also be compiled using Boost MPI so that MCTAL files can
be merged in parallel. All machines (e.g., back-end nodes of a cluster) performing parallel operations must
have access to the files to be merged.

USAGE: mergemctals [--version] [--verbose] [--output output]
<MCTAL [MCTAL ...]>

DESCRIPTION:

mergemctals statistically merges multiple MCNP MCTAL files into a single MCTAL
file.

OPTIONS:

--version : Print version and exit

--verbose, -v : Increase output verbosity

--output, -o : Output MCTAL file name [Default: mergemctals.out]

MCTAL : MCTAL file names to be merged

2.2 The mergemeshtals Utility

The mergemeshtals utility statistically merges the results in multiple MCNP MESHTAL (type B/FMESH)
files and produces a single resulting MESHTAL file. mergemeshtals only operates on the column formatted
version of the MESHTAL files. mergemeshtals can also be compiled using Boost MPI so that the MESHTAL
files can be merged in parallel, though all machines (e.g., back-end nodes of a cluster) performing parallel
operations must have access to the files to be merged.

USAGE: mergemeshtals [--version] [--verbose] [--output output]
<MESHTAL [MESHTAL ...]>

DESCRIPTION:

mergemeshtals statistically merges multiple MCNP MESHTAL files into a single
MESHTAL file.

OPTIONS:

--version : Print version and exit

LA-UR-17-21779 4

--verbose, -v : Increase output verbosity

--output, -o : Output MESHTAL file name [Default: mergemeshtals.out]

MESHTAL : MESHTAL file names to be merged

2.3 The mctal2rad Utility

The mctal2rad utility converts MCNP image tally results (e.g., FIR, FIP, etc.) in a MCTAL file into TIFF
images. mctal2rad depends on libtiff being installed and available during compilation. The output images
can be created from only the direct contributions, transposed, and/or scaled logarithmically.

USAGE: mctal2rad [--version] [--log] [--direct] [--transpose] <MCTAL>
[TALLY [TALLY ...]]

DESCRIPTION:

mctal2rad converts an image tally from an MCNP MCTAL file into a TIFF image

OPTIONS:

--version, -v : Print version and exit

--log, -l : Produce an image of the log of the MCTAL values

--direct, -d : Produce an image of the direct contribution

--transpose, -t : Transpose the image

MCTAL : MCTAL file containing one or more image tallies

TALLY : Tally number for which to produce the images

2.4 The l3dinfo Utility

The l3dinfo utility reports information about LNK3DNT files. By default l3dinfo reports only basic
information about the LNK3DNT file: geometry, extents, etc. If the --full option is given, then the material
information will be read and reported in addition to the basic information.

USAGE: l3dinfo [--version] [--full] <LNK3DNT [LNK3DNT ...]>

DESCRIPTION:

l3dinfo produces information about LNK3DNT files to stdout

OPTIONS:

--version, -v : Print version and exit

--full, -f : Produce a full listing of the LNK3DNT contents (can

LA-UR-17-21779 5

greatly increase runtime)

LNK3DNT : LNK3DNT files about which to produce information

2.5 The l3dcoarsen Utility

The l3dcoarsen utility coarsens a LNK3DNT file and produces a new LNK3DNT file. By default, the
resulting LNK3DNT file with have preserved material boundaries and the same number of mixed-material
zones as the original; however, the user may keep more or less mixed-materials in a zone if desired.

USAGE: l3dcoarsen [--version] [--novoid] [--ifact ifact] [--jfact jfact]
[--kfact kfact] [--maxmats maxmats] <LNK3DNT> [OUTPUT]

DESCRIPTION:

l3dcoarsen coarsens a LNK3DNT file mesh by specified factors

OPTIONS:

--version, -v : Print version and exit

--novoid, -n : Make voids material '0' rather than the assumed material
'1' (not recommended)

--ifact, -i : Factor by which to coarsen in the first mesh dimension

--jfact, -j : Factor by which to coarsen in the second mesh dimension
(if applicable)

--kfact, -k : Factor by which to coarsen in the third mesh dimension (if
applicable)

--maxmats, -m : Maximum number of materials to keep include on the
coarsened LNK3DNT file (default: same as original)

LNK3DNT : LNK3DNT file name to coarsen

OUTPUT : coarsened LNK3DNT output name (default: lnk3dnt.coarse)

2.6 The l3dscale Utility

The l3dscale utility linearly scales the dimensions of a LNK3DNT file by a user specified factor and produces
a new LNK3DNT file.

USAGE: l3dscale [--version] <LNK3DNT> <FACTOR> [OUTPUT]

DESCRIPTION:

l3dscale scales the dimensions of a LNK3DNT file

OPTIONS:

LA-UR-17-21779 6

--version, -v : Print version and exit

LNK3DNT : LNK3DNT file to be scaled

FACTOR : Scaling factor to be applied to the file

OUTPUT : Output LNK3DNT file name [Default: LNK3DNT.scaled]

3 Description of the MCNPTools Library

The true power of MCNPTools is in the ability for users to write their own custom tools and process MCNP
outputs without the need to parse MCNP’s output formats. Currently, three of MCNP’s outputs can be read
by MCNPTools and accessed in an object-oriented manner:

MCTAL files accessed via the Mctal class which in turn provides access to the MctalTally and MctalKcode
classes.

MESHTAL files accessed via the Meshtal class which in turn provides access to the MeshtalTally class

PTRAC files accessed via the Ptrac class which in turn provides access to the PtracHistory class which
provides access to the PtracEvent class

Each of these three outputs will be discussed in more detail in the following subsections.

3.1 Accessing MCTAL Data with MCNPTools

MCNP MCTAL file data is accessed via three of MCNPTools’ classes:

Mctal class Provides object-oriented access to a MCTAL file.

MctalTally class Provides object-oriented access to a tally in a MCTAL file

MctalKcode class Provides object-oriented access to kcode outputs in a MCTAL file

Each class will be discussed in the following sections.

3.1.1 The Mctal Class

To construct (create) an instance of the Mctal class, one simply passes the name of a MCTAL file to the
Mctal constructor, e.g.,

Mctal("mymctal")

The following table defines the public methods available for the Mctal class:

Method Description
GetCode() Returns a string of the generating code name
GetVersion() Returns a string of the code version
GetProbid() Returns a string of the problem identification
GetDump() Returns an integer of the corresponding restart dump number
GetNps() Returns an integer of the number of histories used in the normalization
GetRandoms() Returns an integer the number of random numbers used

LA-UR-17-21779 7

Method Description
GetTallyList() Returns a list/vector of tally numbers available in in the the MCTAL file
GetTally(NUM) Returns a MctalTally class instance of tally number NUM
GetKcode() Returns a MctalKcode class instance of the kcode calculation data

The most commonly used methods to access data in the MCTAL file are GetTallyList and GetTally for
tally data and GetKcode for kcode data. With GetTallyList and GetTally, loops over the tallies in the
MCTAL file can be created to perform analyses. A Python example of such a loop structure follows:

1 # open the mctal file "mymctal"
2 mctal = mcnptools.Mctal("mymctal")
3

4 # loop over tallies
5 for tallynum in mctal.GetTallyList():
6 tally = mctal.GetTally(tallynum)
7

8 # now do something with the tally

3.1.2 The MctalTally Class

The MctalTally class should only be created through calls to the GetTally method of the Mctal class. The
MctalTally class will provide information about the tally and the values of data contained within the tally.

A Note on MCNP Tallies: MCNP tallies are essentially a nine-dimensional array with each index of the
array describing a bin structure of the tally. These bin structures are as follows:

Name Identifier Description
facet f The facet of the tally, cell, surface, point number
direct/flagged d The flagged/unflagged contribution for cell/surface tallies OR the

direct/scattered contribution for point detectors (this dimension never
exceeds 2)

user u The user bins established by use of an FT tally input or by use of a
TALLYX routine

segment s The segmenting bins established by use of an FS tally input
multiplier m The multiplier bins established by use of an FM tally input
cosine c The cosine bins established by use of an C tally input
energy e The energy bins established by use of an E tally input
time t The time bins established by use of a T tally input
perturbation pert The perturbation number established by use of PERT inputs

With these bin structures, the values and errors in a tally are uniquely identified by the indices
(f,d,u,s,m,c,e,t,pert).

The MctalTally class has the following public class methods:

Method Description
ID() Return the integer tally number
GetFBins() Return a list/vector of the “facet” bins of the tally
GetDBins() Return a list/vector of the “direct/flagged” bins of the tally

LA-UR-17-21779 8

Method Description
GetUBins() Return a list/vector of the “user” bins of the tally
GetSBins() Return a list/vector of the “segment” bins of the tally
GetMBins() Return a list/vector of the “multiplier” bins of the tally
GetCBins() Return a list/vector of the “cosine” bins of the tally
GetEBins() Return a list/vector of the “energy” bins of the tally
GetTBins() Return a list/vector of the “time” bins of the tally
GetValue(f,d,u,s,m,c,e,t,pert) Return the tally value identified by the indices

(f,d,u,s,m,c,e,t,pert)
GetError(f,d,u,s,m,c,e,t,pert) Return the tally relative error identified by the indices

(f,d,u,s,m,c,e,t,pert)

Often it is desirable to interrogate a tally value at the Tally Fluctuation Chart (TFC) bin–the bin on which
statistical analyses are performed. MCNPTools provides a defined constant TFC member of the MctalTally
class that can be used in place of a bin index for any of the (f,d,u,s,m,c,e,t) bins. The following Python
code illustrates how one would fill a list with tally values by iterating over the energy bins of a tally (for
brevity it is assumed the MCTAL file has been opened in class mctal):

1 # get the tally of interest (say tally 834)
2 tally = mctal.GetTally(834)
3

4 # create an alias for the TFC bin
5 TFC = tally.TFC
6

7 # get the energy bins
8 ebins = tally.GetEBins()
9

10 #create lists for tally values and errors
11 values = list()
12 errors = list()
13

14 # iterate over the energy bins
15 for i in range(len(ebins)):
16 # f d u s m c e t
17 values.append(tally.GetValue(TFC, TFC, TFC, TFC, TFC, TFC, i, TFC))
18 errror.append(tally.GetError(TFC, TFC, TFC, TFC, TFC, TFC, i, TFC))

Note that the pert index has been omitted from the example above. The GetValue and GetError methods
will default to the unperturbed tally quantities if pert is omitted.

3.1.3 The MctalKcode Class

The MctalKcode class should be obtained only through calls to GetKcode() method of the Mctal class. The
MctalKcode class will provide information about the keff calculation as a function of cycle. The MctalKcode
class has the following public methods:

Method Description
GetCycles() return the integer number of total kcode cycles
GetSettle() return the integer number of inactive kcode cycles
GetNdat() return the integer number of data elements in a kcode entry

LA-UR-17-21779 9

Method Description
GetValue(QUANTITY, CYCLE) return the value of QUANTITY at the specified CYCLE (default last)

The QUANTITY value that is handed into the GetValue method is a parameterized member constant of the
MctalKcode class. QUANTITY must be one of the following defined parameters within the MctalKcode class
namespace:

Quantity Description
COLLSION_KEFF the estimated collision keff for this cycle
ABSORPTION_KEFF the estimated absorption keff for this cycle
TRACKLENGTH_KEFF the estimated track-length keff for this cycle
COLLISION_PRLT the estimated collision prompt-removal lifetime for this cycle
ABSORPTION_PRLT the estimated absorption prompt-removal lifetime for this cycle
AVG_COLLSION_KEFF the average collision keff to this cycle
AVG_COLLSION_KEFF_STD the standard deviation in the collision keff to this cycle
AVG_ABSORPTION_KEFF the average absorption keff to this cycle
AVG_ABSORPTION_KEFF_STD the standard deviation in the absorption keff to this cycle
AVG_TRACKLENGTH_KEFF the average track-length keff to this cycle
AVG_TRACKLENGTH_KEFF_STD the standard deviation in the track-length keff to this cycle
AVG_COMBINED_KEFF the average combined keff to this cycle
AVG_COMBINED_KEFF_STD the standard deviation in the combined keff to this cycle
AVG_COMBINED_KEFF_BCS the average combined keff by cycles skipped
AVG_COMBINED_KEFF_BCS_STD the standard deviation in the combined keff by cycles skipped
COMBINED_PRLT the average combined prompt-removal lifetime
COMBINED_PRLT_STD the standard deviation in the combined prompt-removal lifetime
CYCLE_NPS the number of histories used in each cycle
AVG_COMBINED_FOM the combined figure of merit

The following Python code illustrates how to get the combined (collision/absorption/track-length) value of
keff and its standard deviation (for brevity it is assumed the MCTAL file has been opened in class mctal):

1 # get the kcode data from the mctal file
2 kcode = mctal.GetKcode()
3

4 # get the average combined keff from the last cycle
5 keff = kcode.GetValue(MctalKcode.AVG_COMBINED_KEFF)
6

7 # get the standard deviation in combined keff
8 keff = kcode.GetValue(MctalKcode.AVG_COMBINED_KEFF_STD)

3.2 Accessing MESHTAL Data with MCNPTools

MCNP MESHTAL (type B, a.k.a, MCNP5 stype mesh tallies) data is accessed through the following classes:

Meshtal provides object-oriented access to the MESHTAL file

MeshtalTally provides object-oriented access to tally data

Each class will be discussed in the following sections.

LA-UR-17-21779 10

3.2.1 The Meshtal Class

To construct (create) and instance of the Meshtal class, one simply passes the name of a MESHTAL (type
B) file to the Meshtal constructor, e.g.,

Meshtal("mymeshtal")

The following table defines the public methods available for the Meshtal class:

Method Description
GetCode() return a string of the generating code name
GetVersion() return a string the code version
GetProbid() return a string the problem id number
GetComment() return a string of the problem comment
GetNps() return the number of histories to which values are normalized
GetTallyList() return a list/vector of tallies in the file
GetTally(NUM) return a MeshtalTally class instance for tally NUM

The most commonly used methods of the Meshtal class are GetTallyList() and GetTally. The following
Python code illustrates how to open a MESHTAL file with the Meshtal class, loop over the tallies, and
obtain the tally data

1 import mcnptools
2

3 # load the meshtal file mymeshtal
4 meshtal = mcnptools.Meshtal("mymeshtal")
5

6 # loop over all the tallies in the file
7 for tallynum in meshtal.GetTallyList():
8 # obtain the tally data
9 tally = meshtal.GetTally(tallynum)

10

11 # now do something with the tally

3.2.2 The MeshtalTally Class

The MeshtalTally provides accessors for a tally in a MESHTAL file. The public methods of the MeshtalTally
class are as follows:

Method Description
ID() return a list/vector of the tally id (number)
GetXRBounds() return a list/vector of the x/r bin boundaries
GetYZBounds() return a list/vector of the y/z bin boundaries
GetZTBounds() return a list/vector of the z/theta bin boundaries
GetEBounds() return a list/vector of the energy bin boundaries
GetTBounds() return a list/vector of the time bin boundaries
GetXRBins() return a list/vector of the x/r bin centers
GetYZBins() return a list/vector of the y/z bin centers
GetZTBins() return a list/vector of the z/theta bin centers
GetEBins() return a list/vector of the energy bins

LA-UR-17-21779 11

Method Description
GetTBins() return a list/vector of the time bins
GetVolume(I,J,K) return the volume of element at index (I,J,K)
GetValue(I,J,K,E,T) return the value at index (I,J,K) and optionally energy index E and time

index T
GetError(I,J,K,E,T) return the relative error at index (I,J,K) and optionally energy index E and

time index T

If the energy bin index is omitted from the GetValue or GetError method calls, then the total bin will be
used if present, otherwise the largest energy bin will be used. Similarly, if the time bin index is omitted from
the GetValue and GetError method calls then the total bin will be used if present, otherwise the last time
bin will be used.

The following Python code illustrates how to loop through spatial elements of a MeshtalTally and query
the values and errors at each element. (For brevity it is assumed the MESHTAL file has already been loaded
into meshtal.)

1 # get the tally to process (say tally 324)
2 tally = meshtal.GetTally(324)
3

4 xrbins = tally.GetXRBins()
5 yzbins = tally.GetYZBins()
6 ztbins = tally.GetZTBins()
7

8 # loop over xrbins
9 for i in range(len(xrbins)):

10 # loop over yzbins
11 for j in range(len(yzbins)):
12 # loop over ztbins
13 for k in range(len(ztbins)):
14 # print the value and error
15 print(i,j,k,meshtal.GetValue(i,j,k),meshtal.GetError(i,j,k))

3.3 Accessing PTRAC Data with MCNPTools

MCNP’s PTRAC data is organized such that the PTRAC file contains histories and each history contains
events—i.e., thing that actually happened to particles. PTRAC data can be read and processed with
MCNPTools by use of the following classes:

Ptrac provides object-oriented access to PTRAC files and accesses PtracHistory classes

PtracHistory provides object-oriented access to histories within the PTRAC file and accesses PtracEvents

PtracNPS provides object-oriented acces to NPS information in a PtracHistory

PtracEvent provides object-oriented access to events and their data within a PtracHistory

The typical workflow when processing PTRAC files with MCNPTools is as follows:

1. Open the PTRAC file with the Ptrac class

2. Obtain histories in PtracHistory objects from the Ptrac class

3. Iterate over the events in PtracEvent objects from the PtracHistory class

LA-UR-17-21779 12

Each of these classes is discussed in the sections that follow.

3.3.1 The Ptrac Class

The Ptrac class opens and manages MCNP PTRAC files and supports both binary and ASCII formatted
PTRAC files. To construct the PTRAC file class, simply pass the PTRAC file name to the Ptrac constructor
with the file type (binary or ASCII). For example, in Python one would use

Ptrac("myptrac", Ptrac.BIN_PTRAC)

to open a binary PTRAC file and

Ptrac("myptrac", Ptrac.ASC_PTRAC)

to open an ASCII PTRAC file. If the file type is omitted, binary is assumed.

The Ptrac class has only one method ReadHistories(NUM) which returns a list/vector of histories. If NUM is
omitted, then all the histories in the PTRAC file are read—this can be quite time consuming and is generally
not recommended. Typical use of reading histories in Python looks like the following:

1 # open the ptrac file (assuming binary)
2 ptrac = mcnptools.Ptrac("myptrac")
3

4 # read history data in batches of 10000 histories
5 histories = ptrac.ReadHistories(10000)
6

7 # while histories has something in it
8 while histories:
9

10 # iterate over the histories
11 for h in histories:
12 # do somehting with the history data
13

14 # read in more histories, again a batch of 10000
15 histories = ptrac.ReadHistories(10000)

3.3.2 The PtracHistory Class

The PtracHistory class provides access to the events within the history. The public class methods are

Method Description
GetNPS() returns a PtracNPS class with NPS information
GetNumEvents() returns the number of events in the history
GetEvent(I) returns the Ith event in the history

A typical use of the PtracHistory class to obtain its events looks like the following in Python (it is assumed
that a PtracHistory exists in the variable hist):

1 for i in range(hist.GetNumEvents()):
2 event = hist.GetEvent(i)
3

4 # now do something with the event

LA-UR-17-21779 13

3.3.3 The PtracNPS Class

The PtracNPS class contains information about the history. The public methods in the PtracNPS class are
the following:

Method Description
NPS() return the history number
Cell() return the filtering cell from CELL keyword (if present)
Surface() return the filtering surface from SURFACE keyword (if present)
Tally() return the filtering tally from TALLY keyword (if present)
Value() return the tally score from TALLY keyword (if present)

3.3.4 The PtracEvent Class

The PtracEvent class contains information about the event. Different event types contain different information
about the event. The PtracEvent public class methods are as follows:

Method Description
Type() returns the event type: one of Ptrac::SRC (source), Ptrac::BNK (bank),

Ptrac::COL (collision), Ptrac::SUR (surface crossing), or Ptrac::TER
(termination)

BankType() returns the bank event type (only for Ptrac::BNK events)
Has(DATA) returns a Boolean of whether or not the data type DATA is contained within

the event
Get(DATA) returns the value of the requested data type DATA

The DATA types available for the Has and Get methods are part of the Ptrac name space and are presented
below:

Data Type Description
NODE node number
ZAID ZAID the particle interacts with
RXN reaction type (MT number)
SURFACE surface number
ANGLE angle of particle crossing the surface
TERMINATION_TYPE termination type
PARTICLE particle type
CELL cell number
MATERIAL material number
COLLISION_NUMBER collision number
X particle x coordinate
Y particle y coordinate
Z particle z coordinate
U particle direction cosine with respect to the x axis
V particle direction cosine with respect to the y axis
W particle direction cosine with respect to the z axis
ENERGY particle energy
WEIGHT particle weight

LA-UR-17-21779 14

Data Type Description
TIME particle time

The following Python code demonstrates how to find all collision events in a history and print the energy (for
brevity a PtracHistory instance is assumed to be in the hist variable):

1 #iterate over all events in the history
2 for i in range(hist.GetNumEvents()):
3 event = hist.GetEvent()
4

5 # check if the event is a collision event
6 if(event.Type() == Ptrac.COL):
7 # print the energy
8 print(event.Get(Ptrac.ENERGY))

The following table lists the PTRAC bank type variable specifiers (with associated ID numbers) that are
part of the Ptrac name space:

Bank Type Description
BNK_DXT_TRACK DXTRAN particle
BNK_ERG_TME_SPLIT Energy or Time splitting
BNK_WWS_SPLIT Weight-window surface crossing
BNK_WWC_SPLIT Weight-window collision
BNK_UNC_TRACK Forced-collision uncollided part
BNK_IMP_SPLIT Importance splitting
BNK_N_XN_F Neutrons from fission
BNK_N_XG Gammas from neutron production
BNK_FLUORESCENCE Fluorescence x-rays
BNK_ANNIHILATION Annihilation photons
BNK_PHOTO_ELECTRON Photo electrons
BNK_COMPT_ELECTRON Compton electrons
BNK_PAIR_ELECTRON Pair-production electron
BNK_AUGER_ELECTRON Auger electrons
BNK_PAIR_POSITRON Pair-production positron
BNK_BREMSSTRAHLUNG Bremsstrahlung production
BNK_KNOCK_ON Knock-on electron
BNK_K_X_RAY K shell x-ray production
BNK_N_XG_MG Multigroup (n,xγ)
BNK_N_XF_MG Multigroup (n,f)
BNK_N_XN_MG Multigroup (n,xn)
BNK_G_XG_MG Multigroup (γ,xγ)
BNK_ADJ_SPLIT Multigroup adjoint splitting
BNK_WWT_SPLIT Weight-window mean-free-path split
BNK_PHOTONUCLEAR Photonuclear production
BNK_DECAY Radioactive decay
BNK_NUCLEAR_INT Nuclear interaction
BNK_RECOIL Recoil nucleus
BNK_DXTRAN_ANNIHIL DXTRAN annihilation photon from pulse-height tally variance

reduction
BNK_N_CHARGED_PART Light ions from neutrons
BNK_H_CHARGED_PART Light ions from protons

LA-UR-17-21779 15

Bank Type Description
BNK_N_TO_TABULAR Library neutrons from model neutrons
BNK_MODEL_UPDAT1 Secondary particles from inelastic nuclear interactions
BNK_MODEL_UPDATE Secondary particles from elastic nuclear interactions
BNK_DELAYED_NEUTRON Delayed neutron from radioactive decay
BNK_DELAYED_PHOTON Delayed photon from radioactive decay
BNK_DELAYED_BETA Delayed β− from radioactive decay
BNK_DELAYED_ALPHA Delayed α from radioactive decay
BNK_DELAYED_POSITRN Delayed β+ from radioactive decay

The following table lists the PTRAC termination types (with associated ID numbers) that are members of
the Ptrac name space:

Termination Type Description
TER_ESCAPE Escape
TER_ENERGY_CUTOFF Energy cutoff
TER_TIME_CUTOFF Time cutoff
TER_WEIGHT_WINDOW Weight-window roulette
TER_CELL_IMPORTANCE Cell importance roulette
TER_WEIGHT_CUTOFF Weight-cutoff roulette
TER_ENERGY_IMPORTANCE Energy-importance roulette
TER_DXTRAN DXTRAN roulette
TER_FORCED_COLLISION Forced-collision
TER_EXPONENTIAL_TRANSFORM Exponential-transform
TER_N_DOWNSCATTERING Neutron downscattering
TER_N_CAPTURE Neutron capture
TER_N_N_XN Loss to (n,xn)
TER_N_FISSION Loss to fission
TER_N_NUCLEAR_INTERACTION Nuclear interactions
TER_N_PARTICLE_DECAY Particle decay
TER_N_TABULAR_BOUNDARY Tabular boundary
TER_P_COMPTON_SCATTER Photon Compton scattering
TER_P_CAPTURE Photon capture
TER_P_PAIR_PRODUCTION Photon pair production
TER_P_PHOTONUCLEAR Photonuclear reaction
TER_E_SCATTER Electron scatter
TER_E_BREMSSTRAHLUNG Bremsstrahlung
TER_E_INTERACTION_DECAY Interaction or decay
TER_GENNEUT_NUCLEAR_INTERACTION Generic neutral-particle nuclear interactions
TER_GENNEUT_ELASTIC_SCATTER Generic neutral-particle elastic scatter
TER_GENNEUT_DECAY Generic neutral-particle particle decay
TER_GENCHAR_MULTIPLE_SCATTER Generic charged-particle multiple scatter
TER_GENCHAR_BREMSSTRAHLUNG Generic charged-particle bremsstrahlung
TER_GENCHAR_NUCLEAR_INTERACTION Generic charged-particle nuclear interactions
TER_GENCHAR_ELASTIC_SCATTER Generic charged-particle elastic scatter
TER_GENCHAR_DECAY Generic charged-particle particle decay
TER_GENCHAR_CAPTURE Generic charged-particle capture
TER_GENCHAR_TABULAR_SAMPLING Generic charged-particle tabular sampling

LA-UR-17-21779 16

4 Acknowledgments

The authors would like to acknowledge Mike Rising, David Dixon, and Jeff Bull for their review of MCNPTools’
documentation and testing.

5 C++ Examples

5.1 Mctal Example 1

This example opens a MCTAL file and extracts the energy bins and energy-bin tally values for tally 4.

1 #include <iostream>
2 #include <vector>
3 #include "McnpTools.hpp"
4

5 int main() {
6

7 // construct the mctal class from mctal file "my_mctal"
8 mcnptools::Mctal m("my_mctal");
9

10 int tfc = mcnptools::MctalTally::TFC; // alias for -1
11

12 // get tally 4 from the mctal file
13 mcnptools::MctalTally t4 = m.GetTally(4);
14

15 // get the energy bins of tally 4
16 std::vector<double> t4_e = t4.GetEBins();
17

18 // loop over energy bin indices to store and print tally bin value
19 // using the TFC bin for all other bins
20 std::vector<double> t4_evals(t4_e.size()); // storage for tally values
21 for(unsigned int i=0; i<t4_e.size(); i++) {
22 // f d u s m c e t
23 t4_evals[i] = t4.GetValue(tfc,tfc,tfc,tfc,tfc,tfc,i,tfc);
24 std::cout << t4_evals.at(i) << std::endl;
25 }
26

27 return 0;
28 }

5.2 Mctal Example 2

This example extracts the keff value and standard deviation for the active cycles, i.e., from the last settle
cycle through the last active cycle.

1 #include <iostream>
2 #include "McnpTools.hpp"
3

4 int main() {

LA-UR-17-21779 17

5

6 // construct the mctal class from the mctal file "my_mctal"
7 mcnptools::Mctal m("my_mctal");
8

9 // get the kcode data
10 mcnptools::MctalKcode kc = m.GetKcode();
11

12 // alias for average combined keff
13 unsigned int keff = mcnptools::MctalKcode::AVG_COMBINED_KEFF;
14 // alias for average combined keff standard deviation
15 unsigned int keff_std = mcnptools::MctalKcode::AVG_COMBINED_KEFF_STD;
16

17 // loop over ACTIVE cycles and print
18 for(unsigned int i=kc.GetSettle(); i<kc.GetCycles(); i++) {
19 std::cout << i << " "
20 << kc.GetValue(keff,i) << " "
21 << kc.GetValue(keff_std,i) << std::endl;
22 }
23

24 return 0;
25 }

5.3 Meshtal Example

This example reads tally 4 from MESHTAL file my_meshtal and prints the values at a slice through the z
index 5 (using 0 indexing).

1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4 #include "McnpTools.hpp"
5

6 int main() {
7

8 // construct the meshtal class from meshtal file "my_meshtal"
9 mcnptools::Meshtal m("my_meshtal");

10

11 // get tally 4 from the meshtal file
12 mcnptools::MeshtalTally t4 = m.GetTally(4);
13

14 // get the x and y bin centers
15 std::vector<double> x = t4.GetXRBins();
16 std::vector<double> y = t4.GetYZBins();
17

18 // loop over x and y bins indices and print the tally value for
19 // z index of 5
20 std::cout << std::scientific << std::setprecision(5);
21 for(unsigned int i=0; i<x.size(); i++) {
22 for(unsigned int j=0; j<y.size(); j++) {
23 std::cout << std::setw(12) << t4.GetValue(i,j,5);
24 }

LA-UR-17-21779 18

25 std::cout << std::endl;
26 }
27

28 return 0;
29 }

5.4 Ptrac Example 1

This example opens the binary PTRAC file my_ptrac and prints the (x, y, z) location and energy of bank
events.

1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4 #include "McnpTools.hpp"
5

6 int main() {
7

8 std::cout << std::scientific << std::setprecision(5);
9

10 // explicitly open the file as a binary ptrac
11 mcnptools::Ptrac p("my_ptrac", mcnptools::Ptrac::BIN);
12

13 // initialize counter
14 unsigned int cnt = 0;
15

16 // read histories in batches of 10000
17 std::vector<mcnptools::PtracHistory> hists = p.ReadHistories(10000);
18 while(hists.size() > 0) {
19

20 // loop over all histories
21 for(unsigned int h=0; h<hists.size(); h++) {
22 // loop over all events in the history
23 for(unsigned int e=0; e<hists.at(h).GetNumEvents(); e++) {
24

25 mcnptools::PtracEvent event = hists.at(h).GetEvent(e);
26

27 if(event.Type() == mcnptools::Ptrac::BNK) {
28 cnt += 1;
29 std::cout << std::setw(13) << cnt
30 << std::setw(13) << event.Get(mcnptools::Ptrac::X)
31 << std::setw(13) << event.Get(mcnptools::Ptrac::Y)
32 << std::setw(13) << event.Get(mcnptools::Ptrac::Z)
33 << std::setw(13) << event.Get(mcnptools::Ptrac::ENERGY)
34 << std::endl;
35 }
36

37 }
38 }
39

40 hists = p.ReadHistories(10000);

LA-UR-17-21779 19

41 }
42

43 return 0;
44 }

5.5 Ptrac Example 2

This example opens binary PTRAC file my_ptrac and prints the (x, y, z) location and angle of surface
crossings.

1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4 #include "McnpTools.hpp"
5

6 int main() {
7

8 std::cout << std::scientific << std::setprecision(5);
9

10 // explicitly open the file as a binary ptrac
11 mcnptools::Ptrac p("my_ptrac", mcnptools::Ptrac::BIN);
12

13 // read histories in batches of 10000
14 std::vector<mcnptools::PtracHistory> hists = p.ReadHistories(10000);
15 while(hists.size() > 0) {
16

17 // loop over all histories
18 for(unsigned int h=0; h<hists.size(); h++) {
19 // loop over all events in the history
20 for(unsigned int e=0; e<hists.at(h).GetNumEvents(); e++) {
21

22 mcnptools::PtracEvent event = hists.at(h).GetEvent(e);
23

24 if(event.Type() == mcnptools::Ptrac::SUR) {
25 std::cout << std::setw(13) << event.Get(mcnptools::Ptrac::X)
26 << std::setw(13) << event.Get(mcnptools::Ptrac::Y)
27 << std::setw(13) << event.Get(mcnptools::Ptrac::Z)
28 << std::setw(13) << event.Get(mcnptools::Ptrac::ANGLE)
29 << std::endl;
30 }
31

32 }
33 }
34

35 hists = p.ReadHistories(10000);
36 }
37

38 return 0;
39 }

LA-UR-17-21779 20

6 Python Examples

6.1 Mctal Example 1

This example opens a MCTAL file and extracts the energy bins and energy-bin tally values for tally 4.

1 from mcnptools import Mctal, MctalTally
2

3 # construct the mctal class from mctal file "my_mctal"
4 m = Mctal("my_mctal")
5

6 tfc = MctalTally.TFC; # alias for -1
7

8 # get tally 4 from the mctal file
9 t4 = m.GetTally(4);

10

11 # get the energy bins of tally 4
12 t4_e = t4.GetEBins();
13

14 # loop over energy bin indices to store and print tally bin value
15 # using the TFC bin for all other bins
16

17 # store the tally values with list comprehension
18 # f d u s m c e t
19 t4_evals = [t4.GetValue(tfc,tfc,tfc,tfc,tfc,tfc,i,tfc) for i in range(len(t4_e))];
20

21 # print the tally values
22 for i in range(len(t4_evals)):
23 print t4_evals[i];

6.2 Mctal Example 2

This example extracts the keff value and standard deviation for the active cycles, i.e., from the last settle
cycle through the last active cycle.

1 from mcnptools import Mctal, MctalKcode
2

3 # construct the mctal class from the mctal file "my_mctal"
4 m = Mctal("my_mctal")
5

6 # get the kcode data
7 kc = m.GetKcode()
8

9 # alias for average combined keff
10 keff = MctalKcode.AVG_COMBINED_KEFF
11 # alias for average combined keff standard deviation
12 keff_std = MctalKcode.AVG_COMBINED_KEFF_STD
13

14 # loop over active cycles and print
15 for i in range(kc.GetSettle(),kc.GetCycles()):
16 print i, " ", kc.GetValue(keff,i), " ", kc.GetValue(keff_std,i)

LA-UR-17-21779 21

6.3 Meshtal Example

This example reads tally 4 from MESHTAL file my_meshtal and prints the values at a slice through the z
index 5 (using 0 indexing).

1 from mcnptools import Meshtal, MeshtalTally
2 from sys import stdout
3

4 # construct the meshtal class from meshtal file "my_meshtal"
5 m = Meshtal("my_meshtal")
6

7 # get tally 4 from the meshtal file
8 t4 = m.GetTally(4)
9

10 # get the x and y bin centers
11 x = t4.GetXRBins()
12 y = t4.GetYZBins()
13

14 # loop over x and y bins indices and print the tally value for
15 # z index of 5
16 for i in range(len(x)):
17 for j in range(len(y)):
18 stdout.write("{:12.5e}".format(t4.GetValue(i,j,5)))
19 stdout.write("\n")

6.4 Ptrac Example 1

This example opens the binary PTRAC file my_ptrac and prints the (x, y, z) location and energy of bank
events.

1 from mcnptools import Ptrac
2 from sys import stdout
3

4 # explicitly open the file as a binary ptrac
5 p = Ptrac("my_ptrac", Ptrac.BIN)
6

7 # initialize counter
8 cnt = 0
9

10 # read histories in batches of 10000
11 hists = p.ReadHistories(10000)
12 while hists:
13

14 # loop over all histories
15 for h in hists:
16 # loop over all events in the history
17 for e in range(h.GetNumEvents()):
18

19 event = h.GetEvent(e)
20

21 if event.Type() == Ptrac.BNK:
22 cnt += 1

LA-UR-17-21779 22

23

24 stdout.write("{:13d}{:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(\
25 cnt,
26 event.Get(Ptrac.X), \
27 event.Get(Ptrac.Y), \
28 event.Get(Ptrac.Z), \
29 event.Get(Ptrac.ENERGY) \
30))
31

32 hists = p.ReadHistories(10000)

6.5 Ptrac Example 2

This example opens binary PTRAC file my_ptrac and prints the (x, y, z) location and angle of surface
crossings.

1 from mcnptools import Ptrac
2 from sys import stdout
3

4 # explicitly open the file as a binary ptrac
5 p = Ptrac("my_ptrac", Ptrac.BIN)
6

7 # read histories in batches of 10000
8 hists = p.ReadHistories(10000)
9

10 while hists:
11

12 # loop over all histories
13 for h in hists:
14 # loop over all events in the history
15 for e in range(h.GetNumEvents()):
16

17 event = h.GetEvent(e)
18

19 if event.Type() == Ptrac.SUR:
20 stdout.write("{:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(\
21 event.Get(Ptrac.X), \
22 event.Get(Ptrac.Y), \
23 event.Get(Ptrac.Z), \
24 event.Get(Ptrac.ANGLE) \
25))
26

27 hists = p.ReadHistories(10000)

LA-UR-17-21779 23

	Installation
	Overview and Requirements
	Building the MCNPTools C++ Library and Utilities
	Building the MCNPTools Python2 and Python3 Extensions
	Installing the Python3 Extensions with pip

	The MCNPTools Utilities
	The mergemctals Utility
	The mergemeshtals Utility
	The mctal2rad Utility
	The l3dinfo Utility
	The l3dcoarsen Utility
	The l3dscale Utility

	Description of the MCNPTools Library
	Accessing MCTAL Data with MCNPTools
	The Mctal Class
	The MctalTally Class
	The MctalKcode Class

	Accessing MESHTAL Data with MCNPTools
	The Meshtal Class
	The MeshtalTally Class

	Accessing PTRAC Data with MCNPTools
	The Ptrac Class
	The PtracHistory Class
	The PtracNPS Class
	The PtracEvent Class

	Acknowledgments
	C++ Examples
	Mctal Example 1
	Mctal Example 2
	Meshtal Example
	Ptrac Example 1
	Ptrac Example 2

	Python Examples
	Mctal Example 1
	Mctal Example 2
	Meshtal Example
	Ptrac Example 1
	Ptrac Example 2

